Flytte gjennomsnittlige konvolutter Flytte gjennomsnittlige konvolutter Innledning Flytte gjennomsnittlige konvolutter er prosentbaserte konvolutter angitt over og under et bevegelige gjennomsnitt. Det bevegelige gjennomsnittet, som danner grunnlaget for denne indikatoren, kan være et enkelt eller eksponentielt glidende gjennomsnitt. Hver konvolutt angis deretter samme prosent over eller under det bevegelige gjennomsnittet. Dette skaper parallelle band som følger prishandling. Med et bevegelige gjennomsnittsgrunnlag som base, kan Moving Average Envelopes brukes som en trend-indikator. Denne indikatoren er imidlertid ikke begrenset til bare trenden etter. Konvoluttene kan også brukes til å identifisere overkjøpte og oversoldte nivåer når trenden er relativt flat. Beregningsberegning for flytende gjennomsnittlige konvolutter er rett fram. Velg først et enkelt glidende gjennomsnitt eller eksponentielt glidende gjennomsnitt. Enkel glidende gjennomsnitt vekt hvert datapunkt (pris) likt. Eksponentielle glidende gjennomsnitt legger mer vekt på de siste prisene og har mindre lag. For det andre, velg antall tidsperioder for glidende gjennomsnitt. Tredje, angi prosentandelen for konvoluttene. Et 20-dagers glidende gjennomsnitt med en 2,5 konvolutt viser følgende to linjer: Tabellen over viser IBM med en 20-dagers SMA og 2,5 konvolutter. Merk at 20-dagers SMA ble lagt til denne SharpChart som referanse. Legg merke til hvordan konvoluttene beveger seg parallelt med 20-dagers SMA. De forblir en konstant 2,5 over og under det bevegelige gjennomsnittet. Tolkningsindikatorer basert på kanaler, bånd og konvolutter er utformet for å omfatte de fleste prishandlinger. Derfor beveger seg over eller under konvoluttene rettferdighet. Trender starter ofte med sterke trekk i en eller annen retning. En overspenning over den øvre konvolutten viser ekstraordinær styrke, mens et stup under den nederste konvolutten viser ekstraordinær svakhet. Slike sterke trekk kan signalere slutten på en trend og begynnelsen på en annen. Med et bevegelige gjennomsnitt som grunnlag, er Moving Average Envelopes en naturlig trend-indikator. Som med glidende gjennomsnitt, vil konvoluttene forsinke prishandling. Retningen av det bevegelige gjennomsnittet dikterer kanalens retning. Generelt er en downtrend tilstede når kanalen beveger seg lavere, mens en opptrend eksisterer når kanalen beveger seg høyere. Trenden er flat når kanalen beveger seg sidelengs. Noen ganger tar en sterk trend ikke tak i etter en konvoluttbrudd, og prisene går inn i et handelsområde. Slike handelsområder er preget av et relativt flytende gjennomsnitt. Konvoluttene kan da brukes til å identifisere overkjøpte og oversolgte nivåer til handelsformål. Et trekk over den øvre konvolutten angir en overkjøpt situasjon, mens et trekk under den nederste konvolutten markerer en oversold tilstand. Parametre Parametrene for Moving Average Envelopes er avhengig av dine tradinginvesting-mål og egenskapene til sikkerheten som er involvert. Traders vil sannsynligvis bruke kortere (raskere) bevegelige gjennomsnitt og relativt stramme konvolutter. Investorer vil sannsynligvis foretrekke lengre (langsommere) bevegelige gjennomsnitt med større konvolutter. En security039s volatilitet vil også påvirke parametrene. Bollinger Bands og Keltner Channels har innebygd mekanismer som automatisk tilpasser seg en security039s volatilitet. Bollinger Bands bruker standardavviket til å angi båndbredde. Keltner-kanaler bruker gjennomsnittlig sann rekkevidde (ATR) for å angi kanalbredde. Disse justeres automatisk for volatilitet. Chartister må selvstendig regne med volatilitet når de angir flyttende gjennomsnittlige konvolutter. Verdipapirer med høy volatilitet vil kreve at bredere bånd omfatter de fleste prishandlinger. Verdipapirer med lav volatilitet kan bruke smalere bånd. Ved å velge de riktige parameterne, bidrar det ofte til å legge over noen forskjellige Flytte gjennomsnittlige konvolutter og sammenligne. Tabellen over viser SampP 500 ETF med tre Moving Average Envelopes basert på 20-dagers SMA. De 2,5 konvoluttene (røde) ble rørt flere ganger, de fem konvoluttene (grønne) ble bare berørt under juli-bølgen. De 10 konvoluttene (rosa) ble aldri rørt, noe som betyr at dette bandet er for bredt. En næringsdrivende kan bruke de fem konvoluttene, mens en kortsiktig handelsmann kunne bruke de 2,5 konvoluttene. Aksjeindekser og ETFer krever strammere konvolutter fordi de vanligvis er mindre volatile enn individuelle aksjer. Alcoa-diagrammet har samme Moving Average Envelopes som SPY-diagrammet. Vær imidlertid oppmerksom på at Alcoa brøt de 10 konvoluttene mange ganger, fordi det er mer volatilt. Trend Identification Moving Average Envelopes kan brukes til å identifisere sterke trekk som signaliserer starten på en utvidet trend. Trikset, som alltid, plukker de riktige parametrene. Dette tar øvelse, prøving og feiling. Tabellen under viser Dow Chemical (DOW) med Moving Average Envelopes (20,10). Sluttpriser brukes fordi flytende gjennomsnitt er beregnet med sluttkurs. Noen kartografer foretrekker barer eller lysestaker for å utnytte intradag dagen høy og lav. Legg merke til hvordan DOW surged over den øvre konvolutten i midten av juli og fortsatte å bevege seg over denne konvolutten til begynnelsen av august. Dette viser ekstraordinær styrke. Vær også oppmerksom på at Flytte gjennomsnittlige konvolutter dukket opp og fulgte på forhånd. Etter et trekk fra 14 til 23 var aksjen klart overkjøpt. Imidlertid etablerte dette trekket et sterkt prejudikat som markerte begynnelsen på en utvidet trend. Da DOW ble overkjøpt kort tid etter å ha opprettet sin opptrending, var det på tide å vente på en spillbar tilbaketrekking. Traders kan se etter tilbakekoblinger med grunnleggende kartanalyse eller med indikatorer. Pullbacks kommer ofte i form av fallende flagg eller kiler. DOW dannet et bilde perfekt fallende flagg i august og brøt motstand i september. Et annet flagg dannet i slutten av oktober med en breakout i november. Etter november-bølgen trakk aksjene tilbake med en fem ukes flagg i desember. Commodity Channel Index (CCI) vises i indikatorvinduet. Flytter under -100 viser oversolgt avlesning. Når den større trenden er oppe, kan oversoldavlesninger brukes til å identifisere tilbakekoblinger for å forbedre risikobelønningsprofilen for en handel. Momentum blir bullish igjen når CCI beveger seg tilbake til positivt territorium (grønne prikkede linjer). Den inverse logikken kan søkes for en downtrend. Et sterkt bevegelse under den nedre konvolutten signalerer ekstraordinær svakhet som kan foreskygge en utvidet downtrend. Tabellen nedenfor viser International Game Tech (IGT) som bryter under 10 konvoluttene for å etablere en nedgang i slutten av oktober 2009. Fordi aksjen var ganske oversold etter denne kraftige nedgangen, ville det vært forsiktig å vente på en sprett. Vi kan da bruke grunnleggende prisanalyse eller annen momentumindikator for å identifisere bounces. Indikatorvinduet viser at den stokastiske oscillatoren brukes til å identifisere overkjøpte studs. Et trekk over 80 anses å være overkjøpt. En gang over 80 kan chartister da se etter et diagramsignal eller et trekk tilbake under 80 for å signalere en nedtur (røde punkterte linjer). Det første signalet ble bekreftet med en støttepause. Det andre signalet resulterte i et whipsaw (tap) fordi aksjen flyttet over 20 noen uker senere. Det tredje signalet ble bekreftet med en trendlinjeskift som resulterte i en ganske kraftig nedgang. Ligner på pris Oscillator Før du går videre til overkjøpte og oversolgte nivåer, er det verdt å påpeke at Flytte gjennomsnittlige konvolutter ligner Percent Price Oscillator (PPO). Flytte gjennomsnittlige konvolutter forteller oss når en sikkerhet handler en viss prosentandel over et bestemt bevegelige gjennomsnitt. PPO viser prosentandelen forskjellen mellom et kort eksponentielt glidende gjennomsnitt og et lengre eksponensielt glidende gjennomsnitt. PPO (1,20) viser prosentandelen forskjellen mellom en 1-periode EMA og en 20-årig EMA. En 1-dagers EMA er lik nærmen. 20-årige eksponentielle flytende gjennomsnittlige konvolutter reflekterer den samme informasjonen. Tabellen over viser Russell 2000 ETF (IWM) med PPO (1,20) og 2,5 eksponentielle flytende gjennomsnittlige konvolutter. Horisontale linjer ble satt til 2,5 og -2,5 på PPO. Legg merke til at prisene beveger seg over 2,5 konvolutt når PPO beveger seg over 2,5 (gul skygge) og prisene flytter under 2,5 konvolutt når PPO beveger seg under -2,5 (oransje skygge). PPO er en momentum-oscillator som kan brukes til å identifisere overkjøpte og oversold-nivåer. I tillegg kan Moving Average Envelopes også brukes til å identifisere overkjøpte og oversolgte nivåer. PPO bruker eksponentielle glidende gjennomsnitt, så det må sammenlignes med Moving Average Envelopes ved hjelp av EMA, ikke SMA. OverkjøptOvertolgt Å måle overkjøpte og oversolgte forhold er vanskelig. Verdipapirer kan bli overkjøpt og forbli overkjøpt i sterk oppgang. På samme måte kan verdipapirer bli solgt og forbli oversold i sterk nedgang. I en sterk opptrend flytter prisene ofte over den øvre konvolutten og fortsetter over denne linjen. Faktisk vil den øvre konvolutten stige når prisen fortsetter over den øvre konvolutten. Dette kan virke teknisk overkjøpt, men det er et tegn på styrke for å forbli overkjøpt. Det motsatte gjelder for oversold. Overkjøpte og oversolde avlesninger brukes best når trenden flater. Diagrammet til Nokia har alt. De rosa linjene representerer Moving Average Envelopes (50,10). Et 50-dagers enkelt glidende gjennomsnitt er i midten (rødt). Konvoluttene er satt 10 over og under dette bevegelige gjennomsnittet. Diagrammet starter med et overkjøpt nivå som ble overkjøpt ettersom en sterk trend dukket opp i april-mai. Pris handling ble hakket fra juni til april, som er det perfekte scenariet for overkjøp og oversold nivåer. Overkjøpte nivåer i september og midten av mars forutsatt reverseringer. På samme måte forså solgte nivåer i august og slutten av oktober fremskritt. Diagrammet avsluttes med en oversold tilstand som forblir oversold ettersom en sterk nedtrend dukker opp. Overkjøpte og overliste forhold bør fungere som varsler for videre analyse. Overkjøpte nivåer bør bekreftes med kartmotstand. Chartister kan også se etter bearish mønstre for å styrke reverseringspotensialet på overkjøpte nivåer. På samme måte bør oversoldnivåer bekreftes med kartstøtte. Chartist kan også se etter bullish mønstre for å styrke reverseringspotensialet på oversolgte nivåer. Konklusjoner Flyttende gjennomsnittlig konvolutter brukes mest som en trend-indikator, men kan også brukes til å identifisere overkjøpte og oversolgte forhold. Etter en konsolideringsperiode kan en sterk konvoluttbryte signalere starten på en utvidet trend. Når en opptrinn er identifisert, kan kartleggere vende seg til momentumindikatorer og andre teknikker for å identifisere oversolgte lesere og pullbacks innenfor den trenden. Overkjøpssituasjoner og bounces kan brukes som salgsmuligheter innenfor en større nedgang. I fravær av sterk trend kan Moving Average Envelopes brukes som Percent Price Oscillator. Flytter over øvre konvolutt signal overkjøp avlesninger, mens det beveger seg under de nedre konvolutt signal oversold avlesning. Det er også viktig å innlemme andre aspekter av teknisk analyse for å bekrefte overkjøp og oversolgt lesing. Motstands - og bearish reverseringsmønstre kan brukes til å bekrefte overkjøpte avlesninger. Støtte og bullish reverseringsmønstre kan brukes til å bekrefte oversolgte forhold. SharpCharts Moving Average Envelopes finnes i SharpCharts som prisoverlegg. Som med et glidende gjennomsnitt, bør konvoluttene vises på toppen av et prismodell. Når du velger indikatoren fra rullegardinlisten, vil standardinnstillingen vises i parametervinduet (20,2,5). MA Konvolutter er basert på et enkelt glidende gjennomsnitt. EMA Konvolutter er basert på et eksponentielt glidende gjennomsnitt. Det første nummeret (20) angir perioder for det bevegelige gjennomsnittet. Det andre nummeret (2.5) setter prosentforskyvningen. Brukere kan endre parametrene slik de passer til kartleggingsbehovet. Tilsvarende glidende gjennomsnitt kan legges til som separat overlegg. Klikk her for et levende eksempel. Oversold etter Break over øvre konvolutt: Denne skanningen ser etter aksjer som brøt over sin øvre eksponentielle Moving Average Envelope (50,10) for tjue dager siden for å bekrefte eller etablere en opptrinn. Den nåværende 10-årige CCI er under -100 for å indikere en kortsiktig oversold tilstand. Overkjøpt etter Bryte under nedre konvolutt: Denne skanningen ser etter aksjer som brøt under deres lavere eksponentielle Moving Average Envelope (50,10) for tjue dager siden for å bekrefte eller etablere en downtrend. Den nåværende 10-årige CCI er over 100 for å indikere en kortsiktig overkjøpt tilstand. Videre studier Trend Trading for et levende Thomas CarrMoving Gjennomsnitt - Enkle og eksponentielle Moving Gjennomsnitt - Enkel og eksponentiell introduksjon Flytte gjennomsnitt øker prisdataene for å danne en trend-indikator. De forutsier ikke prisretning, men definerer snarere den nåværende retningen med et lag. Flytte gjennomsnittlig forsinkelse fordi de er basert på tidligere priser. Til tross for denne tøysen, beveger bevegelige gjennomsnitt en jevn prishandling og filtrerer ut støyen. De danner også byggesteinene for mange andre tekniske indikatorer og overlegg, for eksempel Bollinger Bands. MACD og McClellan Oscillator. De to mest populære typene av bevegelige gjennomsnittsverdier er Simple Moving Average (SMA) og Exponentential Moving Average (EMA). Disse bevegelige gjennomsnittsverdiene kan brukes til å identifisere retningen til trenden eller definere potensielle støtte - og motstandsnivåer. Here039s et diagram med både en SMA og en EMA på den: Simple Moving Average Calculation Et enkelt bevegelige gjennomsnitt er dannet ved å beregne gjennomsnittsprisen på en sikkerhet over et bestemt antall perioder. De fleste bevegelige gjennomsnitt er basert på sluttkurs. Et 5-dagers enkelt glidende gjennomsnitt er den fem dagers summen av sluttkurs dividert med fem. Som navnet antyder, er et glidende gjennomsnitt et gjennomsnitt som beveger seg. Gamle data blir droppet da nye data kommer til rådighet. Dette får gjennomsnittet til å bevege seg langs tidsskalaen. Nedenfor er et eksempel på et 5-dagers glidende gjennomsnitt som utvikler seg over tre dager. Den første dagen i det bevegelige gjennomsnittet dekker de siste fem dagene. Den andre dagen i glidende gjennomsnitt dråper det første datapunktet (11) og legger til det nye datapunktet (16). Den tredje dagen i det bevegelige gjennomsnittet fortsetter ved å slippe det første datapunktet (12) og legge til det nye datapunktet (17). I eksemplet ovenfor øker prisene gradvis fra 11 til 17 over totalt syv dager. Legg merke til at det bevegelige gjennomsnittet også stiger fra 13 til 15 over en tre-dagers beregningsperiode. Legg også merke til at hver glidende gjennomsnittsverdi ligger like under siste pris. For eksempel er det bevegelige gjennomsnittet for første dag 13 og siste pris 15. Prisene de foregående fire dagene var lavere, og dette medfører at det bevegelige gjennomsnittet går til lag. Eksponentiell Flytende Gjennomsnittlig Beregning Eksponentielle glidende gjennomsnitt reduserer forsinkelsen ved å bruke mer vekt til de siste prisene. Vektingen som brukes på den siste prisen, avhenger av antall perioder i glidende gjennomsnitt. Det er tre trinn for å beregne et eksponentielt glidende gjennomsnitt. Først beregner du det enkle glidende gjennomsnittet. Et eksponentielt glidende gjennomsnitt (EMA) må starte et sted slik at et enkelt glidende gjennomsnitt blir brukt som forrige periode039s EMA i den første beregningen. For det andre, beregne vektingsmultiplikatoren. Tredje, beregne eksponentielt glidende gjennomsnitt. Formelen nedenfor er for en 10-dagers EMA. Et 10-års eksponentielt glidende gjennomsnitt bruker en 18,18 vekting til den siste prisen. En 10-årig EMA kan også kalles en 18.18 EMA. En 20-årig EMA gjelder en vei på 9,52 til den siste prisen (2 (201) .0952). Legg merke til at vektingen for kortere tidsperiode er mer enn vektingen for lengre tidsperiode. Faktisk faller vekten halvparten hver gang den bevegelige gjennomsnittlige perioden fordobles. Hvis du vil ha en bestemt prosentandel for en EMA, kan du bruke denne formelen til å konvertere den til tidsperioder, og deretter angi verdien som EMA039-parameteren: Nedenfor er et regneark eksempel på et 10-dagers enkelt glidende gjennomsnitt og en 10- dag eksponentiell glidende gjennomsnitt for Intel. Enkle bevegelige gjennomsnitt er rett frem og krever liten forklaring. 10-dagers gjennomsnittet beveger seg ganske enkelt som nye priser blir tilgjengelige og gamle priser faller av. Det eksponentielle glidende gjennomsnittet begynner med den enkle glidende gjennomsnittsverdien (22,22) i den første beregningen. Etter den første beregningen tar den normale formelen over. Fordi en EMA begynner med et enkelt bevegelig gjennomsnittsmål, blir dens virkelige verdi ikke realisert før 20 eller så perioder senere. Med andre ord kan verdien på Excel-regnearket avvike fra diagramverdien på grunn av den korte tilbakekallingsperioden. Dette regnearket går bare tilbake 30 perioder, noe som betyr at påvirkning av det enkle glidende gjennomsnittet har hatt 20 perioder å forsvinne. StockCharts går tilbake minst 250 perioder (vanligvis mye lenger) for beregningene, slik at effektene av det enkle glidende gjennomsnittet i den første beregningen er fullstendig forsvunnet. Lagfaktoren Jo lengre det bevegelige gjennomsnittet, desto mer lagret. Et 10-dagers eksponensielt glidende gjennomsnitt vil krame prisene ganske tett og ta kort tid etter at prisene svinger. Kortflytende gjennomsnitt er som fartbåter - skumle og raske å forandre seg. I motsetning til dette, inneholder et 100-dagers glidende gjennomsnitt mange tidligere data som reduserer det. Lengre bevegelige gjennomsnitt er som havskipskip - sløv og sakte å forandre. Det tar en større og lengre prisbevegelse for et 100-dagers glidende gjennomsnitt for å bytte kurs. Tabellen over viser SampP 500 ETF med en 10-dagers EMA tett følgende priser og en 100-dagers SMA-sliping høyere. Selv med januar-februar-tilbakegangen holdt 100-dagers SMA kurset og gikk ikke ned. 50-dagers SMA passer et sted mellom 10 og 100 dagers glidende gjennomsnitt når det gjelder lagfaktoren. Enkel vs eksponentiell flytende gjennomsnitt Selv om det er klare forskjeller mellom enkle glidende gjennomsnitt og eksponentielle glidende gjennomsnitt, er det ikke nødvendigvis bedre enn det andre. Eksponentielle glidende gjennomsnitt har mindre forsinkelse og er derfor mer følsomme overfor siste priser - og de siste prisendringene. Eksponentielle glidende gjennomsnitt vil slå før enkle glidende gjennomsnitt. Enkle bevegelige gjennomsnitt, derimot, representerer et sant gjennomsnitt av priser for hele tidsperioden. Som sådan kan enkle bevegelige gjennomsnitt være bedre egnet til å identifisere støtte - eller motstandsnivåer. Flytte gjennomsnittlig preferanse avhenger av mål, analytisk stil og tidshorisont. Chartister bør eksperimentere med begge typer bevegelige gjennomsnitt samt forskjellige tidsrammer for å finne den beste passformen. Tabellen nedenfor viser IBM med 50-dagers SMA i rødt og 50-dagers EMA i grønt. Begge toppet i slutten av januar, men nedgangen i EMA var skarpere enn nedgangen i SMA. EMA dukket opp i midten av februar, men SMA fortsatte å bli lavere til slutten av mars. Legg merke til at SMA dukket opp over en måned etter EMA. Lengder og tidsrammer Lengden på det bevegelige gjennomsnittet avhenger av de analytiske målene. Kortvarige gjennomsnitt (5-20 perioder) passer best for kortsiktige trender og handel. Chartister interessert i langsiktige trender ville velge lengre bevegelige gjennomsnitt som kan utvide 20-60 perioder. Langsiktig investorer vil foretrekke å flytte gjennomsnitt med 100 eller flere perioder. Noen bevegelige gjennomsnittlige lengder er mer populære enn andre. 200-dagers glidende gjennomsnitt er kanskje den mest populære. På grunn av lengden er dette klart et langsiktig glidende gjennomsnitt. Deretter er det 50-dagers glidende gjennomsnittet ganske populært for den langsiktige trenden. Mange diagrammer bruker de 50-dagers og 200-dagers glidende gjennomsnittene sammen. Kortsiktig, et 10-dagers glidende gjennomsnitt var ganske populært i det siste fordi det var lett å beregne. Man lagde bare tallene og flyttet desimaltegnet. Trend Identification De samme signalene kan genereres ved hjelp av enkle eller eksponentielle glidende gjennomsnitt. Som nevnt ovenfor er preferansen avhengig av hver enkelt person. Disse eksemplene nedenfor vil bruke både enkle og eksponentielle glidende gjennomsnitt. Begrepet glidende gjennomsnitt gjelder både enkle og eksponentielle glidende gjennomsnitt. Retningen av det bevegelige gjennomsnittet gir viktig informasjon om priser. Et stigende glidende gjennomsnitt viser at prisene generelt øker. Et fallende glidende gjennomsnitt indikerer at prisene i gjennomsnitt faller. Et stigende langsiktig glidende gjennomsnitt reflekterer en langsiktig opptrend. Et fallende langsiktig glidende gjennomsnitt reflekterer en langsiktig nedtrend. Tabellen over viser 3M (MMM) med et 150-dagers eksponensielt glidende gjennomsnitt. Dette eksempelet viser hvor godt bevegelige gjennomsnittsverdier fungerer når trenden er sterk. Den 150-dagers EMA avslått i november 2007 og igjen i januar 2008. Legg merke til at det tok 15 tilbakegang å reversere retningen av dette bevegelige gjennomsnittet. Disse forsinkende indikatorene identifiserer trendendringer som de oppstår (i beste fall) eller etter at de oppstår (i verste fall). MMM fortsatte ned til mars 2009 og økte deretter 40-50. Legg merke til at 150-dagers EMA ikke viste seg før etter denne bølgen. Når det gjorde det, fortsatte MMM høyere de neste 12 månedene. Flytte gjennomsnitt arbeider briljant i sterke trender. Double Crossovers To bevegelige gjennomsnitt kan brukes sammen for å generere crossover-signaler. I teknisk analyse av finansmarkedene. John Murphy kaller dette den dobbelte crossover-metoden. Dobbeltoverganger innebærer et relativt kort glidende gjennomsnitt og et relativt langt bevegelige gjennomsnitt. Som med alle bevegelige gjennomsnitt, definerer den generelle lengden på det bevegelige gjennomsnittet tidsrammen for systemet. Et system som bruker en 5-dagers EMA og 35-dagers EMA, vil bli ansett som kortsiktige. Et system som bruker en 50-dagers SMA og 200-dagers SMA, vil bli ansett på mellomlang sikt, kanskje til og med på lang sikt. Et kystovergang skjer når kortere bevegelige gjennomsnittsværdier krysser over lengre bevegelige gjennomsnitt. Dette er også kjent som et gyldent kors. Et bearish crossover oppstår når kortere bevegelige gjennomsnitt krysser under lengre bevegelige gjennomsnitt. Dette er kjent som et dødt kryss. Flytte gjennomsnittsoverganger gir relativt sent signaler. Tross alt har systemet to forsinkende indikatorer. Jo lengre bevegelige gjennomsnittsperioder, desto større er lagringen i signalene. Disse signalene fungerer bra når en god trend tar tak. Imidlertid vil et glidende gjennombruddssystem produsere mange whipsaws i fravær av en sterk trend. Det er også en trippel crossover metode som involverer tre bevegelige gjennomsnitt. Igjen genereres et signal når det korteste bevegelige gjennomsnittet krysser de to lengre bevegelige gjennomsnittene. Et enkelt tredelt crossover-system kan innebære 5-dagers, 10-dagers og 20-dagers glidende gjennomsnitt. Tabellen over viser Home Depot (HD) med en 10-dagers EMA (grønn prikket linje) og 50-dagers EMA (rød linje). Den svarte linjen er den daglige lukkingen. Å bruke en glidende gjennomsnittsovergang ville ha resultert i tre whipsaws før du fikk en god handel. Den 10-dagers EMA brøt under 50-dagers EMA i slutten av oktober (1), men dette var ikke lenge da 10-dagene flyttet tilbake over midten av november (2). Dette krysset varet lengre, men neste bearish crossover i januar (3) skjedde nær prisnivået i slutten av november, noe som resulterte i en annen whipsaw. Dette bearish krysset varede ikke lenge da 10-dagers EMA flyttet tilbake over 50-dagen noen dager senere (4). Etter tre dårlige signaler forløste det fjerde signalet et sterkt trekk når aksjene økte over 20. Det er to takeaways her. For det første er crossovers utsatt for whipsaw. Et pris - eller tidsfilter kan brukes for å forhindre whipsaws. Traders kan kreve crossover til siste 3 dager før du handler eller krever at 10-dagers EMA skal flytte over 50-dagers EMA med en viss mengde før du handler. For det andre kan MACD brukes til å identifisere og kvantifisere disse kryssene. MACD (10,50,1) vil vise en linje som representerer forskjellen mellom de to eksponentielle glidende gjennomsnittene. MACD blir positiv under et gyldent kors og negativt under et dødt kryss. Prosentpris Oscillatoren (PPO) kan brukes på samme måte som prosentandeler. Vær oppmerksom på at MACD og PPO er basert på eksponentielle glidende gjennomsnitt og stemmer ikke overens med enkle glidende gjennomsnitt. Dette diagrammet viser Oracle (ORCL) med 50-dagers EMA, 200-dagers EMA og MACD (50,200,1). Det var fire bevegelige gjennomsnittsoverskridelser over en 12-årig periode. De første tre resulterte i whipsaws eller dårlige handler. En vedvarende trend begynte med fjerde crossover som ORCL avansert til midten av 20-tallet. Nok en gang jobber glidende gjennomsnittsoverganger godt når trenden er sterk, men produserer tap i fravær av en trend. Prisoverskridelser Flytte gjennomsnitt kan også brukes til å generere signaler med enkle prisoverskridelser. Et bullish signal genereres når prisene går over det bevegelige gjennomsnittet. Et bearish signal genereres når prisene flytter under det bevegelige gjennomsnittet. Prisoverskridelser kan kombineres for å handle innenfor den større trenden. Det lengre bevegelige gjennomsnittet setter tonen for den større trenden, og det kortere glidende gjennomsnittet brukes til å generere signalene. Man vil se etter bullish prisoverganger bare når prisene allerede er over det lengre bevegelige gjennomsnittet. Dette ville være handel i harmoni med den større trenden. For eksempel, hvis prisen ligger over 200-dagers glidende gjennomsnitt, vil kartleggere bare fokusere på signaler når prisen beveger seg over 50-dagers glidende gjennomsnitt. Åpenbart vil et trekk under 50-dagers glidende gjennomsnitt forutse et slikt signal, men slike bearish kryss vil bli ignorert fordi den større trenden er oppe. Et bearish kryss ville bare foreslå en tilbaketrekking i en større opptrinn. Et kryss tilbake over 50-dagers glidende gjennomsnitt ville signalere en oppgang i prisene og fortsettelsen av den store opptrenden. Neste diagram viser Emerson Electric (EMR) med 50-dagers EMA og 200-dagers EMA. Aksjen flyttet over og holdt over 200-dagers glidende gjennomsnitt i august. Det var dips under 50-dagers EMA tidlig i november og igjen tidlig i februar. Prisene flyttet raskt over 50-dagers EMA for å gi bullish signaler (grønne piler) i harmoni med større opptrinn. MACD (1,50,1) vises i indikatorvinduet for å bekrefte priskryss over eller under 50-dagers EMA. Den 1-dagers EMA er lik sluttkurs. MACD (1,50,1) er positiv når lukkingen er over 50-dagers EMA og negativ når lukkingen er under 50-dagers EMA. Støtte og motstand Flytte gjennomsnitt kan også fungere som støtte i en uptrend og motstand i en downtrend. En kortsiktig opptrend kan finne støtte nær 20-dagers enkeltflytende gjennomsnitt, som også brukes i Bollinger Bands. Et langsiktig opptrend kan finne støtte nær det 200-dagers enkle glidende gjennomsnittet, som er det mest populære langsiktige glidende gjennomsnittet. Faktisk kan 200-dagers glidende gjennomsnitt gi støtte eller motstand bare fordi den er så mye brukt. Det er nesten som en selvoppfyllende profeti. Figuren over viser NY Composite med det 200-dagers enkle glidende gjennomsnittet fra midten av 2004 til slutten av 2008. 200-dagene ga støtte mange ganger under forskudd. Når trenden reverserte med en dobbel toppstøt, virket det 200-dagers glidende gjennomsnittet som motstand rundt 9500. Forvent ikke eksakte støtte - og motstandsnivåer fra bevegelige gjennomsnitt, spesielt lengre bevegelige gjennomsnitt. Markeder er drevet av følelser, noe som gjør dem utsatt for overskudd. I stedet for eksakte nivåer kan bevegelige gjennomsnittsverdier brukes til å identifisere støtte - eller motstandssoner. Konklusjoner Fordelene ved å bruke bevegelige gjennomsnitt må veies mot ulempene. Flytte gjennomsnitt er trenden som følger eller forsinker, indikatorer som alltid vil være et skritt bakover. Dette er ikke nødvendigvis en dårlig ting skjønt. Tross alt er trenden din venn, og det er best å handle i retning av trenden. Flytte gjennomsnitt sikrer at en næringsdrivende er i tråd med den nåværende trenden. Selv om trenden er din venn, legger verdipapirer mye tid i handelsområder, noe som gjør flytteverdier ineffektive. En gang i en trend vil glidende gjennomsnitt holde deg i, men også gi sent signal. Don039t forventer å selge på toppen og kjøpe på bunnen ved hjelp av bevegelige gjennomsnitt. Som med de fleste tekniske analyseverktøy, bør bevegelige gjennomsnitt ikke brukes alene, men i forbindelse med andre komplementære verktøy. Chartister kan bruke bevegelige gjennomsnitt for å definere den overordnede trenden og deretter bruke RSI til å definere overkjøpte eller oversolgte nivåer. Legge til bevegelige gjennomsnitt til StockCharts-diagrammer Flytte gjennomsnitt er tilgjengelig som en prisoverleggsfunksjon på SharpCharts arbeidsbenk. Med rullegardinmenyen Overlays kan brukerne velge enten et enkelt glidende gjennomsnitt eller et eksponentielt glidende gjennomsnitt. Den første parameteren brukes til å angi antall tidsperioder. En valgfri parameter kan legges til for å spesifisere hvilket prisfelt som skal brukes i beregningene - O for Åpen, H for Høy, L for Lav og C for Lukk. Et komma brukes til å skille mellom parametere. En annen valgfri parameter kan legges til for å skifte de bevegelige gjennomsnittene til venstre (tidligere) eller høyre (fremtidige). Et negativt tall (-10) ville skifte det bevegelige gjennomsnittet til venstre 10 perioder. Et positivt tall (10) ville skifte det bevegelige gjennomsnittet til høyre 10 perioder. Flere bevegelige gjennomsnitt kan overlappes prisplottet ved ganske enkelt å legge til en annen overleggslinje til arbeidsbenken. StockCharts medlemmer kan endre farger og stil for å skille mellom flere bevegelige gjennomsnitt. Når du har valgt en indikator, åpner du Avanserte alternativer ved å klikke på den lille grønne trekant. Avanserte alternativer kan også brukes til å legge til et glidende gjennomsnittlig overlegg til andre tekniske indikatorer som RSI, CCI og Volume. Klikk her for et live diagram med flere forskjellige bevegelige gjennomsnitt. Bruke Flytte Gjennomsnitt med StockCharts-skanninger Her er noen prøve-skanninger som StockCharts-medlemmer kan bruke til å skanne etter ulike bevegelige gjennomsnittlige situasjoner: Bullish Moving Average Cross: Denne skanningen ser etter aksjer med et stigende 150-dagers enkelt glidende gjennomsnitt og et bullish kryss av 5 - dag EMA og 35-dagers EMA. Det 150-dagers glidende gjennomsnittet stiger så lenge det handler over nivået for fem dager siden. Et bullish kryss oppstår når 5-dagers EMA beveger seg over 35-dagers EMA på over gjennomsnittet. Bearish Moving Average Cross: Denne skanningen ser etter aksjer med et fallende 150-dagers enkelt glidende gjennomsnitt og et bearish kryss av 5-dagers EMA og 35-dagers EMA. Det 150-dagers glidende gjennomsnittet faller så lenge det handler under nivået for fem dager siden. Et bearish kryss oppstår når 5-dagers EMA beveger seg under 35-dagers EMA på over gjennomsnittet. Ytterligere studie John Murphy039s bok har et kapittel viet til bevegelige gjennomsnitt og deres ulike bruksområder. Murphy dekker fordeler og ulemper ved å flytte gjennomsnitt. I tillegg viser Murphy hvordan bevegelige gjennomsnitt arbeider med Bollinger Bands og kanalbaserte handelssystemer. Teknisk analyse av finansmarkedene John MurphyIntroduksjon til ARIMA: nonseasonal modeller ARIMA (p, d, q) prognose likning: ARIMA-modeller er i teorien den mest generelle klassen av modeller for å prognose en tidsserie som kan gjøres til å være 8220stationary8221 av differensiering (om nødvendig), kanskje i forbindelse med ikke-lineære transformasjoner som logging eller deflatering (om nødvendig). En tilfeldig variabel som er en tidsserie er stasjonær hvis dens statistiske egenskaper er konstante over tid. En stasjonær serie har ingen trend, dens variasjoner rundt sin gjennomsnitt har en konstant amplitude, og den svinger på en konsistent måte. det vil si at kortsiktige tilfeldige tidsmønstre alltid ser like ut i statistisk forstand. Den sistnevnte tilstanden betyr at dets autokorrelasjoner (korrelasjoner med sine egne tidligere avvik fra gjennomsnittet) forblir konstante over tid, eller tilsvarende, at dets effektspektrum forblir konstant over tid. En tilfeldig variabel i dette skjemaet kan ses som en kombinasjon av signal og støy, og signalet (hvis det er tydelig) kan være et mønster av rask eller langsom, gjennomsnittlig reversering eller sinusformet svingning eller rask veksling i tegn , og det kan også ha en sesongbestemt komponent. En ARIMA-modell kan ses som en 8220filter8221 som forsøker å skille signalet fra støyen, og signalet blir deretter ekstrapolert inn i fremtiden for å oppnå prognoser. ARIMA-prognose-ligningen for en stasjonær tidsserie er en lineær (dvs. regresjonstype) ekvation hvor prediktorene består av lag av de avhengige variable ogor lagene av prognosefeilene. Det er: Forutsigbar verdi for Y en konstant og en vektet sum av en eller flere nylige verdier av Y og eller en vektet sum av en eller flere nylige verdier av feilene. Hvis prediktorene kun består av forsinkede verdier av Y. Det er en ren autoregressiv (8220self-regressed8221) modell, som bare er et spesielt tilfelle av en regresjonsmodell, og som kunne være utstyrt med standard regresjonsprogramvare. For eksempel er en førsteordens autoregressiv (8220AR (1) 8221) modell for Y en enkel regresjonsmodell der den uavhengige variabelen bare er Y forsinket med en periode (LAG (Y, 1) i Statgraphics eller YLAG1 i RegressIt). Hvis noen av prediktorene er lags av feilene, er en ARIMA-modell det IKKE en lineær regresjonsmodell, fordi det ikke er mulig å spesifisere 8220last period8217s error8221 som en uavhengig variabel: feilene må beregnes fra tid til annen når modellen er montert på dataene. Fra et teknisk synspunkt er problemet med å bruke forsinkede feil som prediktorer at modellen8217s spådommer ikke er lineære funksjoner av koeffisientene. selv om de er lineære funksjoner av tidligere data. Så koeffisienter i ARIMA-modeller som inkluderer forsinkede feil må estimeres ved ikke-lineære optimaliseringsmetoder (8220hill-klatring8221) i stedet for bare å løse et system av ligninger. Akronymet ARIMA står for Auto-Regressive Integrated Moving Average. Lags av den stasjonære serien i prognosekvotasjonen kalles kvotoregressivequot vilkår, lags av prognosefeilene kalles quotmoving averagequot vilkår, og en tidsserie som må differensieres for å bli stillestående, sies å være en quotintegratedquot-versjon av en stasjonær serie. Tilfeldige gange og tilfeldige trendmodeller, autoregressive modeller og eksponentielle utjevningsmodeller er alle spesielle tilfeller av ARIMA-modeller. En nonseasonal ARIMA-modell er klassifisert som en quotARIMA (p, d, q) kvotemodell hvor: p er antall autoregressive termer, d er antall ikke-sekundære forskjeller som trengs for stasjonar, og q er antall forsinkede prognosefeil i prediksjonsligningen. Forutsigelsesligningen er konstruert som følger. Først, la y angi den forskjellen på Y. Det betyr: Merk at den andre forskjellen på Y (d2-saken) ikke er forskjellen fra 2 perioder siden. Snarere er det den første forskjellen-av-første forskjellen. som er den diskrete analogen til et andre derivat, det vil si den lokale akselerasjonen av serien i stedet for sin lokale trend. Når det gjelder y. Den generelle prognosekvasjonen er: Her er de bevegelige gjennomsnittsparametrene (9528217s) definert slik at deres tegn er negative i ligningen, etter konvensjonen innført av Box og Jenkins. Noen forfattere og programvare (inkludert R programmeringsspråket) definerer dem slik at de har pluss tegn i stedet. Når faktiske tall er koblet til ligningen, er det ingen tvetydighet, men det er viktig å vite hvilken konvensjon programvaren bruker når du leser utgangen. Ofte er parametrene benevnt der av AR (1), AR (2), 8230 og MA (1), MA (2), 8230 etc. For å identifisere den aktuelle ARIMA modellen for Y. begynner du ved å bestemme differensordren (d) trenger å stasjonærisere serien og fjerne bruttoegenskapene til sesongmessighet, kanskje i forbindelse med en variansstabiliserende transformasjon som logging eller deflating. Hvis du stopper på dette punktet og forutser at den forskjellige serien er konstant, har du bare montert en tilfeldig tur eller tilfeldig trendmodell. Den stasjonære serien kan imidlertid fortsatt ha autokorrelerte feil, noe som tyder på at noen antall AR-termer (p 8805 1) og eller noen nummer MA-termer (q 8805 1) også er nødvendig i prognosekvasjonen. Prosessen med å bestemme verdiene p, d og q som er best for en gitt tidsserie, vil bli diskutert i senere avsnitt av notatene (hvis koblinger er øverst på denne siden), men en forhåndsvisning av noen av typene av nonseasonal ARIMA-modeller som ofte oppstår, er gitt nedenfor. ARIMA (1,0,0) førstegangs autoregressiv modell: Hvis serien er stasjonær og autokorrelert, kan den kanskje forutsies som et flertall av sin egen tidligere verdi, pluss en konstant. Forutsigelsesligningen i dette tilfellet er 8230 som er Y regressert i seg selv forsinket med en periode. Dette er en 8220ARIMA (1,0,0) constant8221 modell. Hvis gjennomsnittet av Y er null, vil ikke det konstante begrepet bli inkludert. Hvis hellingskoeffisienten 981 1 er positiv og mindre enn 1 i størrelsesorden (den må være mindre enn 1 i størrelsesorden dersom Y er stasjonær), beskriver modellen gjennomsnittsreferanseadferd hvor neste periode8217s verdi skal anslås å være 981 1 ganger som langt unna gjennomsnittet som denne perioden8217s verdi. Hvis 981 1 er negativ, forutser det middelreferanseadferd med skifting av tegn, dvs. det forutsier også at Y vil være under gjennomsnittlig neste periode hvis den er over gjennomsnittet denne perioden. I en andre-ordregivende autoregressiv modell (ARIMA (2,0,0)), ville det være et Y t-2 begrep til høyre også, og så videre. Avhengig av tegnene og størrelsene på koeffisientene, kunne en ARIMA (2,0,0) modell beskrive et system hvis gjennomsnitts reversering foregår i sinusformet oscillerende mote, som bevegelse av en masse på en fjær som er utsatt for tilfeldige støt . ARIMA (0,1,0) tilfeldig tur: Hvis serien Y ikke er stasjonær, er den enkleste modellen for den en tilfeldig turmodell, som kan betraktes som et begrensende tilfelle av en AR (1) modell der autoregressive koeffisienten er lik 1, det vil si en serie med uendelig sakte gjennomsnittlig reversering. Forutsigelsesligningen for denne modellen kan skrives som: hvor den konstante sikt er den gjennomsnittlige period-til-periode-endringen (dvs. den langsiktige driften) i Y. Denne modellen kan monteres som en ikke-avskjæringsregresjonsmodell der Første forskjell på Y er den avhengige variabelen. Siden den inneholder (bare) en ikke-sesongforskjell og en konstant periode, er den klassifisert som en quotARIMA (0,1,0) modell med constant. quot. Den tilfeldige tur-uten-drift modellen ville være en ARIMA (0,1, 0) modell uten konstant ARIMA (1,1,0) forskjellig førsteordens autoregressiv modell: Hvis feilene i en tilfeldig turmodell er autokorrelert, kan problemet løses ved å legge til et lag av den avhengige variabelen til prediksjonsligningen - - dvs ved å regresse den første forskjellen på Y i seg selv forsinket med en periode. Dette vil gi følgende prediksjonsligning: som kan omarrangeres til Dette er en førsteordens autoregressiv modell med en rekkefølge av ikke-soneforskjeller og en konstant term, dvs. en ARIMA (1,1,0) modell. ARIMA (0,1,1) uten konstant enkel eksponensiell utjevning: En annen strategi for korrigering av autokorrelerte feil i en tilfeldig gangmodell er foreslått av den enkle eksponensielle utjevningsmodellen. Husk at for noen ikke-stationære tidsserier (for eksempel de som viser støyende svingninger rundt et sakte varierende gjennomsnitt), utfører ikke den tilfeldige turmodellen så vel som et glidende gjennomsnittsverdier av tidligere verdier. Med andre ord, i stedet for å ta den nyeste observasjonen som prognosen for neste observasjon, er det bedre å bruke et gjennomsnitt av de siste observasjonene for å filtrere ut støy og mer nøyaktig anslå det lokale gjennomsnittet. Den enkle eksponensielle utjevningsmodellen bruker et eksponentielt vektet glidende gjennomsnitt av tidligere verdier for å oppnå denne effekten. Forutsigelsesligningen for den enkle eksponensielle utjevningsmodellen kan skrives i en rekke matematisk ekvivalente former. hvorav den ene er den såkalte 8220error correction8221 skjemaet, der den forrige prognosen er justert i retning av feilen den gjorde: Fordi e t-1 Y t-1 - 374 t-1 per definisjon kan dette omskrives som : som er en ARIMA (0,1,1) - out-konstant prognosekvasjon med 952 1 1 - 945. Dette betyr at du kan passe en enkel eksponensiell utjevning ved å angi den som en ARIMA (0,1,1) modell uten konstant, og den estimerte MA (1) - koeffisienten tilsvarer 1-minus-alfa i SES-formelen. Husk at i SES-modellen er gjennomsnittsalderen for dataene i 1-periode fremover prognosene 1 945. Det betyr at de vil ha en tendens til å ligge bak trender eller vendepunkter med ca 1 945 perioder. Det følger at gjennomsnittlig alder av dataene i 1-periode fremover prognosene for en ARIMA (0,1,1) uten konstant modell er 1 (1 - 952 1). For eksempel, hvis 952 1 0,8 er gjennomsnittsalderen 5. Når 952 1 nærmer seg 1, blir ARIMA (0,1,1) uten konstant modell et veldig langsiktig glidende gjennomsnitt og som 952 1 nærmer seg 0 blir det en tilfeldig tur uten drivmodell. What8217s den beste måten å korrigere for autokorrelasjon: legge til AR-vilkår eller legge til MA-vilkår I de to foregående modellene ble problemet med autokorrelerte feil i en tilfeldig turmodell løst på to forskjellige måter: ved å legge til en forsinket verdi av differensierte serier til ligningen eller legge til en forsinket verdi av prognosen feil. Hvilken tilnærming er best En tommelfingerregel for denne situasjonen, som vil bli nærmere omtalt senere, er at positiv autokorrelasjon vanligvis behandles best ved å legge til et AR-uttrykk for modellen og negativ autokorrelasjon vanligvis behandles best ved å legge til en MA term. I forretnings - og økonomiske tidsserier oppstår negativ autokorrelasjon ofte som en artefakt av differensiering. (Generelt reduserer differensiering positiv autokorrelasjon og kan til og med føre til en bryter fra positiv til negativ autokorrelasjon.) Så, ARIMA (0,1,1) modellen, der differensiering er ledsaget av en MA-term, brukes hyppigere enn en ARIMA (1,1,0) modell. ARIMA (0,1,1) med konstant enkel eksponensiell utjevning med vekst: Ved å implementere SES-modellen som en ARIMA-modell, får du faktisk en viss fleksibilitet. Først og fremst er estimert MA (1) - koeffisient tillatt å være negativ. Dette tilsvarer en utjevningsfaktor som er større enn 1 i en SES-modell, som vanligvis ikke er tillatt i SES-modellprosedyren. For det andre har du muligheten til å inkludere en konstant periode i ARIMA-modellen hvis du ønsker det, for å estimere en gjennomsnittlig ikke-null trend. ARIMA-modellen (0,1,1) med konstant har prediksjonsligningen: Forventningene for en periode fremover fra denne modellen er kvalitativt lik SES-modellen, bortsett fra at bane av de langsiktige prognosene vanligvis er en skrånende linje (hvis skråning er lik mu) i stedet for en horisontal linje. ARIMA (0,2,1) eller (0,2,2) uten konstant lineær eksponensiell utjevning: Linjære eksponentielle utjevningsmodeller er ARIMA-modeller som bruker to ikke-soneforskjeller i sammenheng med MA-termer. Den andre forskjellen i en serie Y er ikke bare forskjellen mellom Y og seg selv forsinket av to perioder, men det er den første forskjellen i den første forskjellen - dvs. Y-endringen i Y i periode t. Således er den andre forskjellen på Y ved periode t lik (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. En annen forskjell på en diskret funksjon er analog med et andre derivat av en kontinuerlig funksjon: det måler kvoteringsberegningsquot eller quotcurvaturequot i funksjonen på et gitt tidspunkt. ARIMA-modellen (0,2,2) uten konstant forutser at den andre forskjellen i serien er lik en lineær funksjon av de to siste prognosefeilene: som kan omarrangeres som: hvor 952 1 og 952 2 er MA (1) og MA (2) koeffisienter. Dette er en generell lineær eksponensiell utjevningsmodell. i hovedsak det samme som Holt8217s modell, og Brown8217s modell er et spesielt tilfelle. Den bruker eksponensielt vektede glidende gjennomsnitt for å anslå både et lokalt nivå og en lokal trend i serien. De langsiktige prognosene fra denne modellen konvergerer til en rett linje hvis skråning avhenger av den gjennomsnittlige trenden observert mot slutten av serien. ARIMA (1,1,2) uten konstant fuktet trend lineær eksponensiell utjevning. Denne modellen er illustrert i de tilhørende lysbildene på ARIMA-modellene. Den ekstrapolerer den lokale trenden i slutten av serien, men flater ut på lengre prognoshorisonter for å introdusere et konservatismedokument, en praksis som har empirisk støtte. Se artikkelen om hvorfor Damped Trend worksquot av Gardner og McKenzie og quotgolden Rulequot-artikkelen av Armstrong et al. for detaljer. Det er generelt tilrådelig å holde fast i modeller der minst en av p og q ikke er større enn 1, dvs. ikke prøv å passe på en modell som ARIMA (2,1,2), da dette sannsynligvis vil føre til overfitting og kvadrat-faktorquot problemer som er omtalt nærmere i notatene om den matematiske strukturen til ARIMA-modellene. Implementering av regneark: ARIMA-modeller som de som er beskrevet ovenfor, er enkle å implementere på et regneark. Forutsigelsesligningen er bare en lineær ligning som refererer til tidligere verdier av originale tidsserier og tidligere verdier av feilene. Dermed kan du sette opp et ARIMA prognose regneark ved å lagre dataene i kolonne A, prognoseformelen i kolonne B, og feilene (data minus prognoser) i kolonne C. Forutsigelsesformelen i en typisk celle i kolonne B ville ganske enkelt være et lineært uttrykk som refererer til verdier i forrige rader av kolonner A og C, multiplisert med de relevante AR - eller MA-koeffisientene lagret i celler andre steder på regnearket.
Få mest mulig ut av ansatteopsjonsopsjoner En ansattaksjonsopsjonsplan kan være et lukrativt investeringsinstrument hvis det er riktig administrert. Av denne grunn har disse planene lenge tjent som et vellykket verktøy for å tiltrekke toppledere, og de siste årene har blitt et populært middel for å lokke ikke-ledende ansatte. Dessverre unnlater noen fortsatt å dra full nytte av pengene generert av deres ansattebeholdning. Forstå arten av aksjeopsjoner. beskatning og virkningen på personlig inntekt er nøkkelen til å maksimere en slik potensielt lukrativ fordel. Hva er en ansattaksjonsopsjon En ansattopsjonsopsjon er en kontrakt utstedt av en arbeidsgiver til en ansatt for å kjøpe et bestemt antall aksjer i selskapsbeholdningen til en fast pris for en begrenset periode. Det er to brede klassifiseringer av opsjoner utstedt: ikke-kvalifiserte aksjeopsjoner (NSO) og incentivaksjoner (ISO). Ikke-kvalifiserte aksjeopsjoner adskiller seg fra opsjonsopsjoner på to måter. For det første tilbys N...
Comments
Post a Comment